Keck Integral-field Spectroscopy of M87 Reveals an Intrinsically Triaxial Galaxy and a Revised Black Hole Mass

Author:

Liepold Emily R.ORCID,Ma Chung-PeiORCID,Walsh Jonelle L.ORCID

Abstract

Abstract The three-dimensional intrinsic shape of a galaxy and the mass of the central supermassive black hole provide key insight into the galaxy’s growth history over cosmic time. Standard assumptions of a spherical or axisymmetric shape can be simplistic and can bias the black hole mass inferred from the motions of stars within a galaxy. Here, we present spatially resolved stellar kinematics of M87 over a two-dimensional 250″ × 300″ contiguous field covering a radial range of 50 pc–12 kpc from integral-field spectroscopic observations at the Keck II Telescope. From about 5 kpc and outward, we detect a prominent 25 km s−1 rotational pattern, in which the kinematic axis (connecting the maximal receding and approaching velocities) is 40° misaligned with the photometric major axis of M87. The rotational amplitude and misalignment angle both decrease in the inner 5 kpc. Such misaligned and twisted velocity fields are a hallmark of triaxiality, indicating that M87 is not an axisymmetrically shaped galaxy. Triaxial Schwarzschild orbit modeling with more than 4000 observational constraints enabled us to determine simultaneously the shape and mass parameters. The models incorporate a radially declining profile for the stellar mass-to-light ratio suggested by stellar population studies. We find that M87 is strongly triaxial, with ratios of p = 0.845 for the middle-to-long principal axes and q = 0.722 for the short-to-long principal axes, and determine the black hole mass to be ( 5.37 0.25 + 0.37 ± 0.22 ) × 10 9 M , where the second error indicates the systematic uncertainty associated with the distance to M87.

Funder

National Science Foundation

Heising-Simons Foundation

Adolph C. and Mary Sprague Miller Institute for Basic Research in Science, University of California Berkeley

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3