Nuclear Physics with Gravitational Waves from Neutron Stars Disrupted by Black Holes

Author:

Clarke Teagan A.ORCID,Chastain Lani,Lasky Paul D.ORCID,Thrane EricORCID

Abstract

Abstract Gravitational waves from neutron star–black hole (NSBH) mergers that undergo tidal disruption provide a potential avenue to study the equation of state of neutron stars and hence the behavior of matter at its most extreme densities. We present a phenomenological model for the gravitational-wave signature of tidal disruption, which allows us to measure the disruption time. We carry out a study with mock data, assuming an optimistically nearby NSBH event with parameters tuned for measuring the tidal disruption. We show that a two-detector network of 40 km Cosmic Explorer instruments can measure the time of disruption with a precision of ≈0.5 ms, which corresponds to a constraint on the neutron star radius of ≈0.7 km (90% credibility). This radius constraint is wider than the constraint obtained by measuring the tidal deformability of the neutron star of the same system during the inspiral. Moreover, the neutron star radius is likely to be more tightly constrained using binary neutron star mergers. While NSBH mergers are important for the information they provide about stellar and binary astrophysics, they are unlikely to provide insights into nuclear physics beyond what we will already know from binary neutron star mergers.

Funder

ARC Centre of Excellence for Gravitational-wave Discovery

Discovery Project

LIEF Project

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3