Milky Way–like Gas Excitation in an Ultrabright Submillimeter Galaxy at z = 1.6

Author:

Sulzenauer N.ORCID,Dannerbauer H.ORCID,Díaz-Sánchez A.ORCID,Ziegler B.ORCID,Iglesias-Groth S.ORCID,Rebolo R.ORCID

Abstract

Abstract Based on observations with the IRAM 30 m and Yebes 40 m telescopes, we report evidence of the detection of Milky Way–like, low-excitation molecular gas, up to the transition CO(J = 5–4), in a distant, dusty star-forming galaxy at z CO = 1.60454. WISE J122651.0+214958.8 (alias SDSS J1226, the Cosmic Seahorse), is strongly lensed by a foreground galaxy cluster at z = 0.44 with a source magnification of μ = 9.5 ± 0.7. This galaxy was selected by cross-correlating near-to-mid-infrared colors within the full-sky AllWISE survey, originally aiming to discover rare analogs of the archetypical strongly lensed submillimeter galaxy SMM J2135–0102, the Cosmic Eyelash. We derive an apparent (i.e., not corrected for lensing magnification) rest-frame 8–1000 μm infrared luminosity of μ L IR = 1.66 0.04 + 0.04 × 10 13 L and apparent star formation rate μSFRIR = 2960 ± 70 M yr−1. SDSS J1226 is ultrabright at S 350μm ≃ 170 mJy and shows similarly bright low-J CO line intensities as SMM J2135–0102, however, with exceptionally small CO(J = 5–4) intensity. We consider different scenarios to reconcile our observations with typical findings of high-z starbursts, and speculate about the presence of a previously unseen star formation mechanism in cosmic noon submillimeter galaxies. In conclusion, the remarkable low line luminosity ratio r 5,2 = 0.11 ± 0.02 is best explained by an extended, main-sequence star formation mode—representing a missing link between starbursts to low-luminosity systems during the epoch of peak star formation history.

Funder

Spanish Ministry of Science, Innovation and Universities

Spanish Ministry of Science, Innovation and Universities (MICIU) co-financed by FEDER

Agencia Estatal de Investigacion del Ministerio de Ciencia e Innovacion

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3