New Evidence on the Origin of Solar Wind Microstreams/Switchbacks

Author:

Kumar PankajORCID,Karpen Judith T.ORCID,Uritsky Vadim M.ORCID,Deforest Craig E.ORCID,Raouafi Nour E.ORCID,DeVore C. RichardORCID,Antiochos Spiro K.ORCID

Abstract

Abstract Microstreams are fluctuations in the solar wind speed and density associated with polarity-reversing folds in the magnetic field (also denoted switchbacks). Despite their long heritage, the origin of these microstreams/switchbacks remains poorly understood. For the first time, we investigated periodicities in microstreams during Parker Solar Probe (PSP) Encounter 10 to understand their origin. Our analysis was focused on the inbound corotation interval on 2021 November 19–21, while the spacecraft dove toward a small area within a coronal hole (CH). Solar Dynamics Observatory remote-sensing observations provide rich context for understanding the PSP in situ data. Extreme ultraviolet images from the Atmospheric Imaging Assembly reveal numerous recurrent jets occurring within the region that was magnetically connected to PSP during intervals that contained microstreams. The periods derived from the fluctuating radial velocities in the microstreams (approximately 3, 5, 10, and 20 minutes) are consistent with the periods measured in the emission intensity of the jetlets at the base of the CH plumes, as well as in larger coronal jets and in the plume fine structures. Helioseismic and Magnetic Imager magnetograms reveal the presence of myriad embedded bipoles, which are known sources of reconnection-driven jets on all scales. Simultaneous enhancements in the PSP proton flux and ionic (3He, 4He, Fe, O) composition during the microstreams further support the connection with jetlets and jets. In keeping with prior observational and numerical studies of impulsive coronal activity, we conclude that quasiperiodic jets generated by interchange/breakout reconnection at CH bright points and plume bases are the most likely sources of the microstreams/switchbacks observed in the solar wind.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3