Abstract
Abstract
Common-envelope evolution is important in the formation of neutron star binaries within the isolated binary formation channel. As a neutron star inspirals within the envelope of a primary massive star, it accretes and spins up. Because neutron stars are in the strong-gravity regime, they have a substantial relativistic mass deficit, i.e., their gravitational mass is less than their baryonic mass. This effect causes some fraction of the accreted baryonic mass to convert into neutron star binding energy. The relativistic mass deficit also depends on the nuclear equation of state, since more compact neutron stars will have larger binding energies. We model the mass growth and spin-up of neutron stars inspiraling within common-envelope environments and quantify how different initial binary conditions and hadronic equations of state affect the post-common-envelope neutron star’s mass and spin. From these models, we find that neutron star mass growth is suppressed by ≈15%–30%. We also find that for a given amount of accreted baryonic mass, more compact neutron stars will spin-up faster while gaining less gravitational mass, and vice versa. This work demonstrates that a neutron star’s strong gravity and nuclear microphysics plays a role in neutron-star-common-envelope evolution, in addition to the macroscopic astrophysics of the envelope. Strong gravity and the nuclear equation of state may thus affect both the population properties of neutron star binaries and the cosmic double neutron star merger rate.
Funder
Department of Energy
NASA
National Science Foundation
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献