Large-scale Linear Magnetic Holes with Magnetic Mirror Properties in Hybrid Simulations of Solar Wind Turbulence

Author:

Arrò GiuseppeORCID,Califano FrancescoORCID,Pucci FrancescoORCID,Karlsson TomasORCID,Li HuiORCID

Abstract

Abstract Magnetic holes (MHs) are coherent magnetic field dips whose size ranges from fluid to kinetic scale, ubiquitously observed in the heliosphere and in planetary environments. Despite the long-standing effort in interpreting the abundance of observations, the origin and properties of MHs are still debated. In this Letter, we investigate the interplay between plasma turbulence and MHs, using a 2D hybrid simulation initialized with solar wind parameters. We show that fully developed turbulence exhibits localized elongated magnetic depressions, whose properties are consistent with linear MHs frequently encountered in space. The observed MHs develop self-consistently from the initial magnetic field perturbations by trapping hot ions with large pitch angles. Ion trapping produces an enhanced perpendicular temperature anisotropy that makes MHs stable for hundreds of ion gyroperiods, despite the surrounding turbulence. We introduce a new quantity, based on local magnetic field and ion temperature values, to measure the efficiency of ion trapping, with potential applications to the detection of MHs in satellite measurements. We complement this method by analyzing the ion velocity distribution functions inside MHs. Our diagnostics reveal the presence of trapped gyrotropic ion populations, whose velocity distribution is consistent with a loss cone, as expected for the motion of particles inside a magnetic mirror. Our results have potential implications for the theoretical and numerical modeling of MHs.

Funder

International Space Science Institute

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3