Misalignment of Terrestrial Circumbinary Planets as an Indicator of Their Formation Mechanism

Author:

Childs Anna C.ORCID,Martin Rebecca G.ORCID

Abstract

Abstract Circumbinary gas disks are often observed to be misaligned with the binary orbit, suggesting that planet formation may proceed in a misaligned disk. With n-body simulations, we consider the formation of circumbinary terrestrial planets from a particle disk that is initially misaligned. We find that if terrestrial planets form in this way, in the absence of gas, they can only form close to coplanar or close to polar to the binary orbit. Planets around a circular binary form coplanar while planets around an eccentric binary can form coplanar or polar depending on the initial disk misalignment and the binary eccentricity. The more massive a terrestrial planet is, the more aligned it is (to coplanar or polar) because it has undergone more mergers that lead on average to smaller misalignment angles. Nodal precession of particle disks with very large initial inclinations lead to high mutual inclinations between the particles. This produces high relative velocities between particles that lead to mass ejections that can completely inhibit planet formation. Misaligned terrestrial circumbinary planets may be able to form in the presence of a misaligned circumbinary gas disk that may help to nodally align the particle orbits and maintain the inclination of the planets during their formation.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A 5MJup non-transiting coplanar circumbinary planet around Kepler-1660AB;Monthly Notices of the Royal Astronomical Society;2023-08-25

2. Orbital stability of two circumbinary planets around misaligned eccentric binaries;Monthly Notices of the Royal Astronomical Society;2023-03-11

3. Coplanar Circumbinary Planets Can Be Unstable to Large Tilt Oscillations in the Presence of an Inner Polar Planet;The Astrophysical Journal Letters;2023-03-01

4. Grid-based simulations of polar circumbinary discs: polar alignment and vortex formation;Monthly Notices of the Royal Astronomical Society;2023-01-24

5. Orbits of the TOI-1338 and TIC-172900988 systems;Monthly Notices of the Royal Astronomical Society;2022-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3