MHD Simulation of a Solar Eruption from Active Region 11429 Driven by a Photospheric Velocity Field

Author:

Wang XinyiORCID,Jiang ChaoweiORCID,Feng XueshangORCID

Abstract

Abstract Data-driven simulation is becoming an important approach for realistically characterizing the configuration and evolution of solar active regions, revealing the onset mechanism of solar eruption events, and hopefully achieving the goal of accurate space weather forecasting, which is beyond the scope of any existing theoretical modeling. Here we performed a full 3D MHD simulation using the data-driven approach and followed the whole evolution process from the quasi-static phase to eruption successfully for solar active region (AR) NOAA 11429. The MHD system was driven at the bottom boundary by a photospheric velocity field, which is derived by the DAVE4VM method from the observed vector magnetograms. The simulation shows that a magnetic flux rope was generated by a persistent photospheric flow before the flare onset and then triggered to erupt by torus instability. Our simulation demonstrates a high degree of consistency with observations in the preeruption magnetic structure, the timescale of the quasi-static stage, the pattern of flare ribbons, as well as the time evolution of the magnetic energy injection and total unsigned magnetic flux. We further found that an eruption can also be initiated in the simulation driven by only the horizontal components of the photospheric flow, but a comparison of the different simulations indicates that the vertical flow at the bottom boundary is necessary for reproducing more realistically these observed features, emphasizing the importance of flux emergence during the development of this AR.

Funder

National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3