Polytropic Behavior in the Structures of Interplanetary Coronal Mass Ejections

Author:

Dayeh M. A.ORCID,Livadiotis G.ORCID

Abstract

Abstract The polytropic process characterizes the thermodynamics of space plasma particle populations. The polytropic index, γ, is particularly important as it describes the thermodynamic behavior of the system by quantifying the changes in temperature as the system is compressed or expanded. Using Wind spacecraft plasma and magnetic field data during 1995 February–2015 December, we investigate the thermodynamic evolution in 336 interplanetary coronal mass ejection (ICME) events. For each event, we derive the index γ in the sheath and magnetic ejecta structures, along with the pre- and post-event regions. We then examine the distributions of all γ indices in these four regions and derive the entropic gradient of each, which is indicative of the ambient heating. We find that in the ICME sheath region, where wave turbulence is expected to be highest, the thermodynamics takes longest to recover into the original quasi-adiabatic process, while it recovers faster in the quieter ejecta region. This pattern creates a thermodynamic cycle, featuring a near adiabatic value γγ a (=5/3) upstream of the ICMEs, γ a γ ∼ 0.26 in the sheaths, γ a γ ∼ 0.13 in the ICME ejecta, and recovers again to γγ a after the passage of the ICME. These results expose the turbulent heating rates in the ICME plasma: the lower the polytropic index from its adiabatic value and closer to its isothermal value, the larger the entropic gradient, and thus, the rate of turbulent heating that heats the ICME plasma.

Funder

NASA ∣ SMD ∣ Heliophysics Division

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3