Abstract
Abstract
Exploration of plasma dynamics in space, including turbulence, is entering a new era of multisatellite constellation measurements that will determine fundamental properties with unprecedented precision. Familiar but imprecise approximations will need to be abandoned and replaced with more-advanced approaches. We present a preparatory study of the evaluation of second- and third-order statistics, using simultaneous measurements at many points. Here, for specificity, the orbital configuration of the NASA Swarm mission is employed in conjunction with 3D magnetohydrodynamics numerical simulations of turbulence. The HelioSwarm nine-spacecraft constellation flies virtually through the turbulence to compare results with the exact numerical statistics. We demonstrate novel increment-based techniques for the computation of (1) the multidimensional spectra and (2) the turbulent energy flux. This latter increment-space estimate of the cascade rate, based on the third-order Yaglom–Politano–Pouquet theory, uses numerous increment-space tetrahedra. Our investigation reveals that HelioSwarm will provide crucial information on the nature of astrophysical turbulence.
Funder
MMS Theory and Modeling
Parker Solar Probe Guest Investigator
PUNCH mission through SWRI
NSF-DOE
EU Materia
EC ∣ Horizon 2020 Framework Programme
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献