Multipoint Detection of GRB221009A’s Propagation through the Heliosphere

Author:

Voshchepynets AndriiORCID,Agapitov Oleksiy V.ORCID,Wilson LynnORCID,Angelopoulos VassilisORCID,Alnussirat Samer T.ORCID,Balikhin MichaelORCID,Hlebena MyroslavaORCID,Korol IhorORCID,Larson DavinORCID,Mitchell DavidORCID,Owen ChristopherORCID,Rahmati AliORCID

Abstract

Abstract We present the results of processing the effects of the powerful gamma-ray burst GRB221009A captured by the charged particle detectors (electrostatic analyzers and solid-state detectors) on board spacecraft at different points in the heliosphere on 2022 October 9. To follow the GRB221009A propagation through the heliosphere, we used the electron and proton flux measurements from solar missions Solar Orbiter and STEREO-A; Earth’s magnetosphere and solar wind missions THEMIS and Wind; meteorological satellites POES15, POES19, and MetOp3; and MAVEN—a NASA mission orbiting Mars. GRB221009A had a structure of four bursts: the less intense Pulse 1—the triggering impulse—was detected by gamma-ray observatories at T 0 = 13:16:59 UT (near the Earth); the most intense Pulses 2 and 3 were detected on board all the spacecraft from the list; and Pulse 4 was detected in more than 500 s after Pulse 1. Due to their different scientific objectives, the spacecraft, whose data were used in this study, were separated by more than 1 au (Solar Orbiter and MAVEN). This enabled the tracking of GRB221009A as it was propagating across the heliosphere. STEREO-A was the first to register Pulse 2 and 3 of the GRB, almost 100 s before their detection by spacecraft in the vicinity of Earth. MAVEN detected GRB221009A Pulses 2, 3, and 4 at the orbit of Mars about 237 s after their detection near Earth. By processing the observed time delays, we show that the source location of the GRB221009A was at R.A. 288.°5, decl. 18.°5 ± 2° (J2000).

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3