JWST/MIRI Spectroscopy of the Disk of the Young Eruptive Star EX Lup in Quiescence

Author:

Kóspál ÁgnesORCID,Ábrahám PéterORCID,Diehl Lindsey,Banzatti AndreaORCID,Bouwman JeroenORCID,Chen LeiORCID,Cruz-Sáenz de Miera FernandoORCID,Green Joel D.ORCID,Henning ThomasORCID,Rab ChristianORCID

Abstract

Abstract EX Lup is a low-mass pre-main-sequence star that occasionally shows accretion-related outbursts. Here, we present JWST/MIRI medium-resolution spectroscopy obtained for EX Lup 14 yr after its powerful outburst. EX Lup is now in quiescence and displays a Class II spectrum. We detect a forest of emission lines from molecules previously identified in infrared spectra of classical T Tauri disks: H2O, OH, H2, HCN, C2H2, and CO2. The detection of organic molecules demonstrates that they are back after disappearing during the large outburst. Spectral lines from water and OH are for the first time deblended and will provide a much-improved characterization of their distribution and density in the inner disk. The spectrum also shows broad emission bands from warm, submicron-size amorphous silicate grains at 10 and 18 μm. During the outburst, in 2008, crystalline forsterite grains were annealed in the inner disk within 1 au, but their spectral signatures in the 10 μm silicate band later disappeared. With JWST we rediscovered these crystals via their 19.0, 20.0, and 23.5 μm emission, the strength of which implies that the particles are at ∼3 au from the star. This suggests that crystalline grains formed in 2008 were transported outwards and now approach the water snowline, where they may be incorporated into planetesimals. Containing several key tracers of planetesimal and planet formation, EX Lup is an ideal laboratory to study the effects of variable luminosity on the planet-forming material and may provide an explanation for the observed high crystalline fraction in solar system comets.

Funder

EC ∣ ERC ∣ HORIZON EUROPE European Research Council

Deutsche Forschungsgemeinschaft

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MINDS;Astronomy & Astrophysics;2024-09

2. MINDS: The DR Tau disk;Astronomy & Astrophysics;2024-06

3. MINDS: The JWST MIRI Mid-INfrared Disk Survey;Publications of the Astronomical Society of the Pacific;2024-05-01

4. Thermal processing of primordial pebbles in evolving protoplanetary disks;Astronomy & Astrophysics;2024-05

5. JWST MIRI MRS Images of Disk Winds, Water, and CO in an Edge-on Protoplanetary Disk;The Astrophysical Journal Letters;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3