Light Curves of the Explosion of ONe White Dwarf + CO White Dwarf Merger Remnant and Type Icn Supernovae

Author:

Wu ChengyuanORCID,Zha ShuaiORCID,Cai YongzhiORCID,Zhang ZhengyangORCID,Yang YiORCID,Xiang DanfengORCID,Lin Weili,Wang XiaofengORCID,Wang BoORCID

Abstract

Abstract Type Icn supernovae (SNe Icn) are a newly detected, rare subtype of interacting stripped-envelope supernovae that show narrow P Cygni lines of highly ionized carbon, oxygen, and neon in their early spectra due to the interactions of the SNe ejecta with dense hydrogen- and helium-deficient circumstellar material (CSM). It has been suggested that SNe Icn may have multiple progenitor channels, such as the explosion of carbon-rich Wolf–Rayet stars or the explosion of stripped-envelope SNe, which undergo binary interactions. Among the SNe Icn, SN 2019jc shows unique properties, and previous work inferred that it may stem from the ultrastripped supernova, but other possibilities still exist. In this work, we aim to simulate the light curves from the explosions of oxygen-neon and carbon-oxygen double white dwarf (WD) merger remnants and to further investigate whether the corresponding explosions can appear as some particular SNe Icn. We generate the light curves from the explosive remnants and analyze the influence of different parameters on the light curves, such as the ejecta mass, explosion energy, mass of 56Ni, and CSM properties. Comparing our results with some SNe Icn, we found that the light curves from the explosions of double WD merger remnants can explain the observable properties of SN 2019jc, from which we infer that this special SN Icn may have a different progenitor. Our results indicate that double WD merger may be an alternative model in producing at least one of the SNe Icn.

Funder

The National Natural Science Foundation of China

National Key R&D Program of China

Yunnan Revitalization Talent Support Program - Young Talent project

Western Light Project of CAS

The Science Research Grant from the China Manned Space Project

Frontier Scientific Research Program of Deep Space Exploration Laboratory

Yunnan Fundamental Research Project

The International Centre of Supernovae, Yunnan Key Laboratory

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3