Formation of Lunar Basins from Impacts of Leftover Planetesimals

Author:

Nesvorný DavidORCID,Roig Fernando V.ORCID,Vokrouhlický DavidORCID,Bottke William F.ORCID,Marchi SimoneORCID,Morbidelli Alessandro,Deienno RogerioORCID

Abstract

Abstract The Moon holds important clues to the early evolution of the solar system. Some 50 impact basins (crater diameter D > 300 km) have been recognized on the lunar surface, implying that the early impact flux was much higher than it is now. The basin-forming impactors were suspected to be asteroids released from an inner extension of the main belt (1.8–2.0 au). Here we show that most impactors were instead rocky planetesimals left behind at ∼0.5–1.5 au after the terrestrial planet accretion. The number of basins expected from impacts of leftover planetesimals largely exceeds the number of known lunar basins, suggesting that the first ∼200 Myr of impacts are not recorded on the lunar surface. The Imbrium basin formation (age ≃3.92 Gyr; impactor diameter d ≳ 100 km) occurs with a 15%–35% probability in our model. Imbrium must have formed unusually late to have only two smaller basins (Orientale and Schrödinger) forming afterwards. The model predicts ≃20 d > 10 km impacts on the Earth 2.5–3.5 Gyr ago (Ga), which is comparable to the number of known spherule beds in the late Archean.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3