Molecular Gas within the Milky Way's Nuclear Wind

Author:

Cashman Frances H.ORCID,Fox Andrew J.ORCID,Savage Blair D.ORCID,Wakker Bart P.ORCID,Krishnarao DhaneshORCID,Benjamin Robert A.ORCID,Richter PhilippORCID,Ashley TrishaORCID,Jenkins Edward B.ORCID,Lockman Felix J.ORCID,Bordoloi RongmonORCID,Kim Tae-Sun

Abstract

Abstract We report the first direct detection of molecular hydrogen associated with the Galactic nuclear wind. The Far-Ultraviolet Spectroscopic Explorer spectrum of LS 4825, a B1 Ib–II star at l, b = 1.67°,−6.63° lying d = 9.9 0.8 + 1.4 kpc from the Sun, ∼1 kpc below the Galactic plane near the Galactic center, shows two high-velocity H2 components at v LSR = −79 and −108 km s−1. In contrast, the FUSE spectrum of the nearby (∼0.6° away) foreground star HD 167402 at d = 4.9 0.7 + 0.8 kpc reveals no H2 absorption at these velocities. Over 60 lines of H2 from rotational levels J = 0 to 5 are identified in the high-velocity clouds. For the v LSR = −79 km s−1 cloud we measure total log N(H2) ≥ 16.75 cm−2, molecular fraction f H 2 ≥ 0.8%, and T 01 ≥ 97 and T 25 ≤ 439 K for the ground- and excited-state rotational excitation temperatures. At v LSR = −108 km s−1, we measure log N(H2) = 16.13 ± 0.10 cm−2, f H 2 ≥ 0.5%, and T 01 = 77 18 + 34 and T 25 = 1092 117 + 149 K, for which the excited-state ortho- to para-H2 is 1.0 0.1 + 0.3 , much less than the equilibrium value of 3 expected for gas at this temperature. This nonequilibrium ratio suggests that the −108 km s−1 cloud has been recently excited and has not yet had time to equilibrate. As the LS 4825 sight line passes close by a tilted section of the Galactic disk, we propose that we are probing a boundary region where the nuclear wind is removing gas from the disk.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Not gone with the wind: survival of high-velocity molecular clouds in the galactic centre;Monthly Notices of the Royal Astronomical Society;2023-11-06

2. The Signature of the Northern Galactic Center Region in Low-velocity UV Absorption;The Astrophysical Journal;2023-08-23

3. Direct observations of the atomic-molecular phase transition in the Milky Way’s nuclear wind;Monthly Notices of the Royal Astronomical Society;2023-06-24

4. Caught in the Act: A Metal-rich High-velocity Cloud in the Inner Galaxy;The Astrophysical Journal;2023-02-01

5. A galactic breeze origin for the Fermi bubbles emission;Monthly Notices of the Royal Astronomical Society;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3