Neutrino Cadence of TXS 0506+056 Consistent with Supermassive Binary Origin

Author:

Tjus Julia BeckerORCID,Jaroschewski IljaORCID,Ghorbanietemad Armin,Bartos ImreORCID,Kun EmmaORCID,Biermann Peter L.ORCID

Abstract

Abstract On 2022 September 18, an alert by the IceCube Collaboration indicated that a ∼170 TeV neutrino arrived in directional coincidence with the blazar TXS 0506+056. This event adds to two previous pieces of evidence that TXS 0506+056 is a neutrino emitter, i.e., a neutrino alert from its direction on 2017 September 22, and a 3σ signature of a dozen neutrinos in 2014/2015. De Bruijn el al. showed that two previous neutrino emission episodes from this blazar could be due to a supermassive binary black hole (SMBBH) central engine where jet precession close to the final coalescence of the binary results in periodic emission. This model predicted a new emission episode consistent with the 2022 September 18 neutrino observation by IceCube. Here, we show that the neutrino cadence of TXS 0506+056 is consistent with an SMBBH origin. We find that the emission episodes are consistent with an SMBBH with mass ratios q ≲ 0.3 for a total black hole mass of M tot ≳ 3 · 108 M . For the first time, we calculate the characteristic strain of the gravitational wave emission of the binary, and show that the merger could be detectable by LISA for black hole masses <5 · 108 M if the mass ratios are in the range 0.1 ≲ q ≲ 0.3. We predict that there can be a neutrino flare existing in the still-to-be-analyzed IceCube data peaking some time between 2019 August and 2021 January if a precessing jet is responsible for all three detected emission episodes. The next flare is expected to peak in the period 2023 January to 2026 August. Further observation will make it possible to constrain the mass ratio as a function of the total mass of the black hole more precisely and would open the window toward the preparation of the detection of SMBBH mergers.

Funder

Deutsche Forschungsgemeinschaft

Alfred P. Sloan Foundation

National Science Foundation

Hungarian Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3