ALMA Reveals Hidden Morphologies in the Molecular Envelope of VY Canis Majoris

Author:

Singh A. P.ORCID,Richards A. M. S.ORCID,Humphreys R. M.ORCID,Decin L.ORCID,Ziurys L. M.ORCID

Abstract

Abstract The J = 2 → 1 transition of CO near 230 GHz and the J = 3 → 2 line of HCN at 265 GHz have been imaged in the envelope of the red hypergiant star, VY Canis Majoris (VY CMa), using the Atacama Large Millimeter Array (ALMA) with angular resolutions 0.″2–1.″5; single-dish data were added to provide sensitivity up to 30″. These images reveal a far more complex envelope, with previously unseen outflows extending 4″–9″ from the star. These new structures include an arc-like outflow with an angular separation of ∼9″ northeast from the stellar position (“NE Arc”), twin fingerlike features approximately 4″ to the north/northeast (“NE Extension”), and a roughly spherical region observed ∼7″ E of the star (“E Bubble”). The NE Arc appears to be decelerating from base (V LSR ∼ 7 km s−1) to tip (V LSR ∼ 18 km s−1), while the NE Extension is blueshifted with V LSR ∼ −7 km s−1. Among the new features, HCN is only detected in the NE Arc. In addition, known structures Arc 1, Arc 2, and NW Arc, as well as other features closer to the star, are closely replicated in CO, suggesting that the gas and dust are well mixed. The CO spectra are consistent with the kinematic picture of VY CMa derived from HST data. Arc 2, however, has added complexity. Preliminary results from CO suggest 12C/13C ∼ 22–38 across the envelope. The additional presence of at least three major episodic mass ejection events significantly broadens the current perspective of the envelope structure and mass-loss history of VY CMa.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3