Characterizing Astrophysical Binary Neutron Stars with Gravitational Waves

Author:

Zhu Xing-JiangORCID,Ashton GregoryORCID

Abstract

Abstract Merging binary neutron stars are thought to be formed predominantly via isolated binary evolution. In this standard formation scenario, the first-born neutron star goes through a recycling process and might be rapidly spinning during the final inspiral, whereas the second-born star is expected to have effectively zero spin at merger. Based on this feature, we propose a new framework for the astrophysical characterization of binary neutron stars observed from their gravitational wave emission. We further propose a prior for the dimensionless spins of recycled neutron stars, given by a gamma distribution with a shape parameter of 2 and a scale parameter of 0.012, extrapolated from radio pulsar observations of Galactic binary neutron stars. Interpreting GW170817 and GW190425 in the context of the standard formation scenario and adopting the gamma-distribution prior, we find positive support (with a Bayes factor of 6, over the nonspinning hypothesis) for a spinning recycled neutron star in GW190425, whereas the spin of the recycled neutron star in GW170817 is small and consistent with our prior. We measure the masses of the recycled (slow) neutron stars in GW170817 and GW190425 to be and , with 68% credibility, respectively. We discuss implications for the astrophysical origins of these two events and outline future prospects of studying binary neutron stars using our framework.

Funder

Australian Research Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3