Optimal Classification and Outlier Detection for Stripped-envelope Core-collapse Supernovae

Author:

Williamson MarcORCID,Modjaz MaryamORCID,Bianco Federica B.ORCID

Abstract

Abstract In the current era of time-domain astronomy, it is increasingly important to have rigorous, data-driven models for classifying transients, including supernovae. We present the first application of principal component analysis to the photospheric spectra of stripped-envelope core-collapse supernovae. We use one of the largest compiled optical data sets of stripped-envelope supernovae, containing 160 SNe and 1551 spectra. We find that the first five principal components capture 79% of the variance of our spectral sample, which contains the main families of stripped supernovae: Ib, IIb, Ic, and broad-lined Ic. We develop a quantitative, data-driven classification method using a support vector machine, and explore stripped-envelope supernovae classification as a function of phase relative to V-band maximum light. Our classification method naturally identifies “transition” supernovae and supernovae with contested labels, which we discuss in detail. We find that the stripped-envelope supernovae types are most distinguishable in the later phase ranges of 10 ± 5 days and 15 ± 5 days relative to V-band maximum, and we discuss the implications of our findings for current and future surveys such as Zwicky Transient Factory and Large Synoptic Survey Telescope.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3