A Large Population of Faint 8 < z < 16 Galaxies Found in the First JWST NIRCam Observations of the NGDEEP Survey

Author:

Austin DuncanORCID,Adams NathanORCID,Conselice Christopher J.ORCID,Harvey ThomasORCID,Ormerod KatherineORCID,Trussler JamesORCID,Li QiongORCID,Ferreira LeonardoORCID,Dayal PratikaORCID,Juodžbalis IgnasORCID

Abstract

Abstract We present an early analysis on the search for high-redshift galaxies using the deepest public JWST imaging to date, the NGDEEP field. These data consist of six-band NIRCam imaging on the Hubble Ultra Deep Field Parallel 2 (HUDF-Par2), covering a total area of 6.3 arcmin2. Based on our initial reduction of the first half of this survey, we reach 5σ depths up to mag = 29.5–29.9 between 1 and 5 μm. Such depths present an unprecedented opportunity to begin exploring the very early universe with JWST. As such, we find high-redshift galaxies by examining the spectral energy distribution of all F444W detections and present 16 new z > 8.5 galaxies identified using two different photometric redshift codes: LePhare and EAZY combined with other significance criteria. The highest-redshift object in our sample is at z = 15.6 0.3 + 0.4 , which has a blue β = 3.02 0.46 + 0.42 and a very low inferred stellar mass of M * = 107.4 M . We also discover a series of faint, low-mass dwarf galaxies with M * < 108.5 M at z ∼ 9 that have blue colors, flat surface brightness profiles, and small sizes <1 kpc. Comparing to previous work in the HUDF-Par2, we find 21 6 < z < 9 candidates including two z = 8 major mergers. One of these merger candidates has an additional two z = 8 sources within 30″, indicating that it may form part of an overdensity. We also compare our results to theory, finding no significant disagreement with a few cold-dark-matter-based models. The discovery of these objects demonstrates the critical need for deeper, or similar depth but wider-area, JWST surveys to explore the early universe.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3