Influence of Intermittency on the Energy Transfer Rate of Solar Wind Turbulence

Author:

Wu HonghongORCID,Huang ShiyongORCID,Wang XinORCID,Yang LipingORCID,Yuan Zhigang

Abstract

Abstract The intermittency in the solar wind turbulence manifests itself in the anisotropic scaling due to the anisotropic spectral index and the intermittent level based on the extended P model. However, the influence of intermittency on the energy transfer rate remains unclear. Here we apply the partial variance of increments method to identify the intermittency for the magnetic field measurements in the fast solar wind from the Ulysses spacecraft. We distinguish the sampling direction using the angle θ RB between the local magnetic field and radial direction to study the anisotropy. We perform the multiorder structure function analyses and adopt the log-Poisson cascade model to describe the role of intermittency in the cascade process. We find that the anisotropy of the scaling becomes isotropic with a complete removal of intermittency. We compare explicitly the anisotropy of the energy transfer rate before and after removing the intermittency for the same interval for the first time. We find a distinct anisotropy with a cascade enhancement in the direction perpendicular to the local magnetic field. The removal of the intermittency greatly weakens the anisotropy by mainly reducing the perpendicular energy transfer rate. Our findings suggest that the intermittency effectively enhances the energy transfer rate, in particular in the perpendicular direction in the solar wind turbulence.

Funder

National Key R\&D Program of China

MOST ∣ National Natural Science Foundation of China

MOE ∣ Fundamental Research Funds for the Central Universities

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3