Potential Atmospheric Compositions of TRAPPIST-1 c Constrained by JWST/MIRI Observations at 15 μm

Author:

Lincowski Andrew P.ORCID,Meadows Victoria S.ORCID,Zieba SebastianORCID,Kreidberg LauraORCID,Morley CarolineORCID,Gillon MichaëlORCID,Selsis FranckORCID,Agol EricORCID,Bolmont EmelineORCID,Ducrot ElsaORCID,Hu RenyuORCID,Koll Daniel D. B.ORCID,Lyu XintongORCID,Mandell AviORCID,Suissa GabrielleORCID,Tamburo PatrickORCID

Abstract

Abstract The first James Webb Space Telescope observations of TRAPPIST-1 c showed a secondary eclipse depth of 421 ± 94 ppm at 15 μm, which is consistent with a bare rock surface or a thin, O2-dominated, low-CO2 atmosphere. Here we further explore potential atmospheres for TRAPPIST-1 c by comparing the observed secondary eclipse depth to synthetic spectra of a broader range of plausible environments. To self-consistently incorporate the impact of photochemistry and atmospheric composition on atmospheric thermal structure and predicted eclipse depth, we use a two-column climate model coupled to a photochemical model and simulate O2-dominated, Venus-like, and steam atmospheres. We find that a broader suite of plausible atmospheric compositions are also consistent with the data. For lower-pressure atmospheres (0.1 bar), our O2–CO2 atmospheres produce eclipse depths within 1σ of the data, consistent with the modeling results of Zieba et al. However, for higher-pressure atmospheres, our models produce different temperature–pressure profiles and are less pessimistic, with 1–10 bar O2, 100 ppm CO2 models within 2.0σ–2.2σ of the measured secondary eclipse depth and up to 0.5% CO2 within 2.9σ. Venus-like atmospheres are still unlikely. For thin O2 atmospheres of 0.1 bar with a low abundance of CO2 (∼100 ppm), up to 10% water vapor can be present and still provide an eclipse depth within 1σ of the data. We compared the TRAPPIST-1 c data to modeled steam atmospheres of ≤3 bars, which are 1.7σ–1.8σ from the data and not conclusively ruled out. More data will be required to discriminate between possible atmospheres or more definitively support the bare rock hypothesis.

Funder

NASA Exoplanet Science Institute

Belgian Federal Science Policy Office

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3