New Horizons Venetia Burney Student Dust Counter Observes Higher than Expected Fluxes Approaching 60 au

Author:

Doner AlexORCID,Horányi MihályORCID,Bagenal FranORCID,Brandt PontusORCID,Grundy WillORCID,Lisse CareyORCID,Parker JoelORCID,Poppe Andrew R.ORCID,Singer Kelsi N.ORCID,Stern S. AlanORCID,Verbiscer AnneORCID

Abstract

Abstract The NASA New Horizons Venetia Burney Student Dust Counter (SDC) measures dust particle impacts along the spacecraft’s flight path for grains with mass ≥10−12 g, mapping out their spatial density distribution. We present the latest SDC dust density, size distribution, and flux measurements through 55 au and compare them to numerical model predictions. Kuiper Belt objects (KBOs) are thought to be the dominant source of interplanetary dust particles in the outer solar system due to both collisions between KBOs and their continual bombardment by interstellar dust particles. Continued measurements through 55 au show higher than model-predicted dust fluxes as New Horizons approaches the putative outer edge of the Kuiper Belt (KB). We discuss potential explanations for the growing deviation: radiation pressure stretches the dust distribution to further heliocentric distances than its parent body distribution; icy dust grains undergo photosputtering that rapidly increases their response to radiation pressure forces and pushes them further away from the Sun; and the distribution of KBOs may extend much further than existing observations suggest. Ongoing SDC measurements at even larger heliocentric distances will continue to constrain the contributions of dust production in the KB. Continued SDC measurements remain crucial for understanding the Kuiper Belt and the interpretation of dust disks around other stars.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3