Tidal Dissipation Due to Inertial Waves Can Explain the Circularization Periods of Solar-type Binaries

Author:

Barker Adrian J.ORCID

Abstract

Abstract Tidal dissipation is responsible for circularizing the orbits and synchronizing the spins of solar-type close binary stars, but the mechanisms responsible are not fully understood. Previous work has indicated that significant enhancements to the theoretically predicted tidal dissipation rates are required to explain the observed circularization periods (P circ) in various stellar populations and their evolution with age. This was based partly on the common belief that the dominant mechanism of tidal dissipation in solar-type stars is turbulent viscosity acting on equilibrium tides in convective envelopes. In this paper, we study tidal dissipation in both convection and radiation zones of rotating solar-type stars following their evolution. We study equilibrium tide dissipation, incorporating a frequency-dependent effective viscosity motivated by the latest hydrodynamical simulations, and inertial wave (dynamical tide) dissipation, adopting a frequency-averaged formalism that accounts for the realistic structure of the star. We demonstrate that the observed binary circularization periods can be explained by inertial wave (dynamical tide) dissipation in convective envelopes. This mechanism is particularly efficient during pre-main-sequence phases, but it also operates on the main sequence if the spin is close to synchronism. The predicted P circ due to this mechanism increases with the main-sequence age in accordance with observations. We also demonstrate that both equilibrium tide and internal gravity-wave dissipation are unlikely to explain the observed P circ, even during the pre-main sequence, based on our best current understanding of these mechanisms. Finally, we advocate more realistic dynamical studies of stellar populations that employ tidal dissipation due to inertial waves.

Funder

UKRI ∣ Science and Technology Facilities Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3