Ice Sublimation in Planetesimals Formed at the Outward Migrating Snowline

Author:

Zhang ZhongtianORCID

Abstract

Abstract Isotopic studies of meteorites suggest that planetesimals were formed as two distinct populations: noncarbonaceous (NC) and carbonaceous (CC) reservoirs. A recent model explains this dichotomy by considering planetesimal formation at the snowline during its migration in the protoplanetary disk, suggesting that NC planetesimals were formed during the outward migration and CC planetesimals were formed during the inward migration. This model has been suggested to contradict meteorite observations because planetesimals formed at the snowline are expected to be rich in H2O and, therefore, develop more oxidizing environments than those inferred from NC iron meteorites. However, if the accreted ice sublimates into vapor without transitioning into a liquid state, the planetesimals may lose most water without being oxidized because reactions between vapor and solids are negligibly slow at temperatures relevant to direct ice sublimation. Here, we investigate the transport of vapor inside a planetesimal and suggest that the pore pressure would have been sufficiently low for direct ice sublimation if (1) the planetesimals were formed during the outward snowline migration (such that they lay inside the snowline after formation and had surfaces permeable to water vapor), (2) these planetesimals were formed by dust-aggregate boulders through “streaming instabilities” instead of being formed directly by submicrometer dust grains, and (3) the boulders were between a few centimeters to ~10 m in size. With these results, the snowline model for NC/CC planetesimal formation may be reconciled with the observations of iron meteorite oxidation states.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3