Kinematical Fluctuations Vary with Galaxy Surface Mass Density

Author:

Zhong Ze-HaoORCID,Zhao GangORCID,Rix Hans-WalterORCID,Ho Luis C.ORCID

Abstract

Abstract The Galaxy inner parts are generally considered to be optically symmetric, as well as kinematically symmetric for most massive early-type galaxies. At the lower-mass end, many galaxies contain lots of small patches in their velocity maps, causing their kinematics to be nonsmooth in small scales and far from symmetry. These small patches can easily be mistaken for measurement uncertainties and have not been well discussed. We used the comparison of observations and numerical simulations to demonstrate the small patches existence beyond uncertainties. For the first time we have found that the fluctuation degrees have an approximate inverse loglinear relation with the galaxy stellar surface mass densities. This tight relation among galaxies that do not show obvious optical asymmetry that traces environmental perturbations indicates that stellar motion in galaxies has inherent asymmetry besides external environment influences. The degree of the kinetic asymmetry is closely related to and constrained by the intrinsic properties of the host galaxy.

Funder

MOST ∣ National Natural Science Foundation of China

MOST ∣ National Key Research and Development Program of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3