Insights on the Sun Birth Environment in the Context of Star Cluster Formation in Hub–Filament Systems

Author:

Arzoumanian DorisORCID,Arakawa SotaORCID,Kobayashi Masato I. N.ORCID,Iwasaki KazunariORCID,Fukuda KoheiORCID,Mori ShojiORCID,Hirai YutakaORCID,Kunitomo MasanobuORCID,Kumar M. S. NandaORCID,Kokubo EiichiroORCID

Abstract

Abstract Cylindrical molecular filaments are observed to be the main sites of Sunlike star formation, while massive stars form in dense hubs at the junction of multiple filaments. The role of hub–filament configurations has not been discussed yet in relation to the birth environment of the solar system and to infer the origin of isotopic ratios of short-lived radionuclides (SLR, such as 26Al) of calcium–aluminum-rich inclusions (CAIs) observed in meteorites. In this work, we present simple analytical estimates of the impact of stellar feedback on the young solar system forming along a filament of a hub–filament system. We find that the host filament can shield the young solar system from stellar feedback, both during the formation and evolution of stars (stellar outflow, wind, and radiation) and at the end of their lives (supernovae). We show that a young solar system formed along a dense filament can be enriched with supernova ejecta (e.g., 26Al) during the formation timescale of CAIs. We also propose that the streamers recently observed around protostars may be channeling the SLR-rich material onto the young solar system. We conclude that considering hub–filament configurations as the birth environment of the Sun is important when deriving theoretical models explaining the observed properties of the solar system.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3