GRB 211227A as a Peculiar Long Gamma-Ray Burst from a Compact Star Merger

Author:

Lü Hou-JunORCID,Yuan Hao-Yu,Yi Ting-FengORCID,Wang Xiang-Gao,Hu You-Dong,Yuan Yong,Rice Jared,Wang Jian-Guo,Cao Jia-Xin,Kong De-Feng,Fernandez-García Emilio,Castro-Tirado Alberto J.,Lian Ji-Shun,Gan Wen-Pei,Wang Shan-QinORCID,Xin Li-Ping,Caballero-García M. D.,Fan Yu-Feng,Liang En-WeiORCID

Abstract

Abstract Long-duration gamma-ray bursts (GRBs) associated with supernovae (SNe) are believed to originate from massive star core-collapse events, whereas short-duration GRBs that are related to compact star mergers are expected to be accompanied by kilonovae. GRB 211227A, which lasted about 84 s, had an initial short/hard spike followed by a series of soft gamma-ray extended emission at redshift z = 0.228. We performed follow-up observations of the optical emission using BOOTES, LCOGT, and the Lijiang 2.4 m telescope, but we detected no associated supernova signature, even down to very stringent limits at such a low redshift. We observed the host galaxy within a large error circle and roughly estimated the physical offset of GRB 211227A as 20.47 ± 14.47 kpc from the galaxy center. These properties are similar to those of GRB 060614, and suggest that the progenitor of GRB 211227A is not favored to be associated with the death of massive stars. Hence, we propose that GRB 211227A originates from a compact star merger. Calculating pseudo-kilonova emission for this case by adopting the typical parameters, we find that any associated pseudo-kilonova is too faint to be detected. If this is the case, it explains naturally the characteristics of the prompt emission, the lack of SN and kilonova emission, and the large physical offset from the galaxy center.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3