A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team

Author:

Riess Adam G.ORCID,Yuan WenlongORCID,Macri Lucas M.ORCID,Scolnic DanORCID,Brout DillonORCID,Casertano Stefano,Jones David O.ORCID,Murakami YukeiORCID,Anand Gagandeep S.ORCID,Breuval LouiseORCID,Brink Thomas G.ORCID,Filippenko Alexei V.ORCID,Hoffmann SamanthaORCID,Jha Saurabh W.ORCID,D’arcy Kenworthy W.ORCID,Mackenty JohnORCID,Stahl Benjamin E.ORCID,Zheng WeiKangORCID

Abstract

Abstract We report observations from the Hubble Space Telescope (HST) of Cepheid variables in the host galaxies of 42 Type Ia supernovae (SNe Ia) used to calibrate the Hubble constant (H 0). These include the complete sample of all suitable SNe Ia discovered in the last four decades at redshift z ≤ 0.01, collected and calibrated from ≥1000 HST orbits, more than doubling the sample whose size limits the precision of the direct determination of H 0. The Cepheids are calibrated geometrically from Gaia EDR3 parallaxes, masers in NGC 4258 (here tripling that sample of Cepheids), and detached eclipsing binaries in the Large Magellanic Cloud. All Cepheids in these anchors and SN Ia hosts were measured with the same instrument (WFC3) and filters (F555W, F814W, F160W) to negate zero-point errors. We present multiple verifications of Cepheid photometry and six tests of background determinations that show Cepheid measurements are accurate in the presence of crowded backgrounds. The SNe Ia in these hosts calibrate the magnitude–redshift relation from the revised Pantheon+ compilation, accounting here for covariance between all SN data and with host properties and SN surveys matched throughout to negate systematics. We decrease the uncertainty in the local determination of H 0 to 1 km s−1 Mpc−1 including systematics. We present results for a comprehensive set of nearly 70 analysis variants to explore the sensitivity of H 0 to selections of anchors, SN surveys, redshift ranges, the treatment of Cepheid dust, metallicity, form of the period–luminosity relation, SN color, peculiar-velocity corrections, sample bifurcations, and simultaneous measurement of the expansion history. Our baseline result from the Cepheid–SN Ia sample is H 0 = 73.04 ± 1.04 km s−1 Mpc−1, which includes systematic uncertainties and lies near the median of all analysis variants. We demonstrate consistency with measures from HST of the TRGB between SN Ia hosts and NGC 4258, and include them simultaneously to yield 72.53 ± 0.99 km s−1 Mpc−1. The inclusion of high-redshift SNe Ia yields H 0 = 73.30 ± 1.04 km s−1 Mpc−1 and q 0 = −0.51 ± 0.024. We find a 5σ difference with the prediction of H 0 from Planck cosmic microwave background observations under ΛCDM, with no indication that the discrepancy arises from measurement uncertainties or analysis variations considered to date. The source of this now long-standing discrepancy between direct and cosmological routes to determining H 0 remains unknown.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 550 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3