Detection of Dust in High-velocity Cloud Complex C–Enriched Gas Accreting onto the Milky Way *

Author:

Fox Andrew J.ORCID,Cashman Frances H.ORCID,Kriss Gerard A.ORCID,de Rosa GisellaORCID,Plesha RachelORCID,Homayouni YasamanORCID,Richter PhilippORCID

Abstract

Abstract We present the detection of dust depletion in Complex C, a massive, infalling, low-metallicity high-velocity cloud in the northern Galactic hemisphere that traces the ongoing accretion of gas onto the Milky Way. We analyze a very high signal-to-noise Hubble Space Telescope Cosmic Origins Spectrograph spectrum of active galactic nucleus (AGN) Mrk 817 formed by coadding 165 individual exposures taken under the AGN STORM 2 program, allowing us to determine dust-depletion patterns in Complex C at unprecedented precision. By fitting Voigt components to the O i, S ii, N i, Si ii, Fe ii, and Al ii absorption and applying ionization corrections from customized Cloudy photoionization models, we find subsolar elemental abundance ratios of [Fe/S] = −0.42 ± 0.08, [Si/S] = −0.29 ± 0.05, and [Al/S] = −0.53 ± 0.08. These ratios indicate the depletion of Fe, Si, and Al into dust grains, since S is mostly undepleted. The detection of dust provides an important constraint on the origin of Complex C, as dust grains indicate the gas has been processed through galaxies, rather than being purely extragalactic. We also derive a low metallicity of Complex C of [S/H] = −0.51 ± 0.16 (≈31% solar), confirming earlier results from this sight line. We discuss origin models that could explain the presence of dust in Complex C, including Galactic fountain models, tidal stripping from the Magellanic Clouds or other satellite galaxies, and precipitation of coronal gas onto dust-bearing “seed” clouds.

Funder

NASA ∣ GSFC ∣ Astrophysics Science Division

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference51 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3