Geometry and Kinematics of a Dancing Milky Way: Unveiling the Precession and Inclination Variation across the Galactic Plane via Open Clusters

Author:

He 何 Zhihong 治宏ORCID

Abstract

Abstract This Letter presents a study of the geometry and motion of the Galactic disk using open clusters in the Gaia era. The findings suggest that the inclination θ i of the Galactic disk increases gradually from the inner to the outer disk, with a shift in orientation at the Galactocentric radius of approximately 6 ± 1 kpc. Furthermore, this study brings forth the revelation that the mid-plane of the Milky Way may not possess a stationary or fixed position. A plausible explanation is that the inclined orbits of celestial bodies within our Galaxy exhibit a consistent pattern of elliptical shapes, deviating from perfect circularity; however, more observations are needed to confirm this. An analysis of the vertical motion along the Galactocentric radius reveals that the disk has warped with precession and that the line of node shifts at different radii, aligning with the results from the classical Cepheids. Although there is uncertainty for precession/peculiar motion in solar orbit, after considering the uncertainty, the study derives a median value of ϕ ̇ LON = 6.8 km s−1 kpc−1 in the Galaxy. This value for the derived precession in the outer disk is lower than those in the literature due to the systematic motion in solar orbit (θ i = 0.°6). The study also finds that the inclinational variation of the disk is significant and can cause systematic motion, with the variation rate θ ̇ i decreasing along the Galactic radius with a slope of −8.9 μas yr−1 kpc−1. Moreover, the derived θ ̇ i in solar orbit is 59.1 ± 11.2sample ± 7.7 V Z μas yr−1, which makes it observable for high-precision astrometry.

Funder

CWNU ∣ Fundamental Research Funds of China West Normal University

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3