Unusual Martian Foreshock Waves Triggered by a Solar Wind Stream Interaction Region

Author:

Su ZhenpengORCID,Wang YumingORCID,Zhang Tielong,Wu Zhiyong,Cheng LongORCID,Zou ZhuxuanORCID,Shen ChenglongORCID,Guo Jingnan,Xiao Sudong,Wang GuoqiangORCID,Pan Zonghao,Liu KaiORCID,Hao Xinjun,Li Yiren,Chen Manming,Chi YutianORCID,Xu MengjiaoORCID

Abstract

Abstract Planetary bow shocks noncollisionally dissipate the incident bulk flow energy of solar wind into some other forms. To what extent and how solar wind disturbances affect the energy dissipation processes at the bow shocks on different planets remain unclear. With the Chinese Tianwen-1 and American Mars Atmosphere and Volatile EvolutioN missions, we present the first observation of significant modifications by a solar wind stream interaction region to the Martian foreshock waves, which are an important energy dissipation product of the bow shock. After the stream interface hitting Mars, an unusual band of foreshock waves emerged, with a central frequency of ∼0.4 Hz and frequency width of ∼0.2 Hz. These waves exhibited highly distorted waveforms, with peak-to-peak amplitudes of 10–25 nT in contrast to a background magnetic field of 6–9 nT. They were approximately elliptically polarized with respect to the wavevector and propagated highly obliquely to the background magnetic field. These waves reported here differed greatly from the commonly known Martian foreshock “30 s waves” and “1 Hz waves,” but resembled, to some extent, the less frequently occurring terrestrial foreshock “3 s waves.” Our present findings may imply an unexpected energy dissipation pattern of the Martian bow shock to the disturbed solar wind, which needs further observational, theoretical, and numerical investigations.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Sciences

Key Research Program of the Chinese Academy of Sciences

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3