Alpha–Proton Differential Flow of the Young Solar Wind: Parker Solar Probe Observations

Author:

Mostafavi P.ORCID,Allen R. C.ORCID,McManus M. D.ORCID,Ho G. C.ORCID,Raouafi N. E.ORCID,Larson D. E.ORCID,Kasper J. C.ORCID,Bale S. D.ORCID

Abstract

Abstract The velocity of alpha particles relative to protons can vary depending on the solar wind type and distance from the Sun. Measurements from the previous spacecraft provided the alpha–proton differential velocities down to 0.3 au. The Parker Solar Probe (PSP) now enables insights into differential flows of the newly accelerated solar wind closer to the Sun for the first time. Here we study the difference between proton and alpha bulk velocities near PSP perihelia of encounters 3–7 when the core solar wind is in the field of view of the Solar Probe Analyzer for Ions instrument. As previously reported at larger heliospheric distances, the alpha–proton differential speed observed by PSP is greater for fast wind than the slow solar wind. We compare PSP observations with various spacecraft measurements and present the radial and temporal evolution of the alpha–proton differential speed. The differential flow decreases as the solar wind propagates from the Sun, consistent with previous observations. While Helios showed a small radial dependence of differential flow for the slow solar wind, PSP clearly showed this dependency for the young slow solar wind down to 0.09 au. Our analysis shows that the alpha–proton differential speed’s magnitude is mainly below the local Alfvén speed. Moreover, alpha particles usually move faster than protons close to the Sun. The PSP crossed the Alfvén surface during its eighth encounter and may cross it in future encounters, enabling us to investigate the differential flow very close to the solar wind acceleration source region for the first time.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3