CECILIA: Direct O, N, S, and Ar Abundances in Q2343-D40, a Galaxy at z ∼ 3

Author:

Rogers Noah S. J.ORCID,Strom Allison L.ORCID,Rudie Gwen C.ORCID,Trainor Ryan F.ORCID,Raptis MenelaosORCID,von Raesfeld CarolineORCID

Abstract

Abstract Measurements of chemical abundances in high-z star-forming (SF) galaxies place important constraints on the enrichment histories of galaxies and the physical conditions in the early Universe. The James Webb Space Telescope (JWST) is beginning to enable direct chemical abundance measurements in galaxies at z > 2 via the detection of the faint T e -sensitive auroral line [O iii] λ4364. However, abundances of other elements (e.g., S and Ar) in high-z galaxies remain unconstrained owing to a lack of T e data and wavelength coverage. Here we present multiple direct abundances in Q2343-D40, a galaxy at z = 2.9628 ± 0.0001 observed with JWST/NIRSpec as part of the CECILIA program. We report the first simultaneous measurement of T e [O iii] and T e [S iii] in a high-z galaxy, finding good agreement with the temperature trends in local SF systems. We measure a gas-phase metallicity of 12+log(O/H) = 8.07 ± 0.06, and the N/O abundance, log(N/O) = −1.37 ± 0.21, is indicative of primary nucleosynthesis. The S/O and Ar/O relative abundances, log(S/O) = −1.88 ± 0.10 and log(Ar/O) = −2.80 ± 0.12, are both >0.3 dex lower than the solar ratios. However, the relative Ar2+/S2+ abundance is consistent with the solar ratio, suggesting that the relative S-to-Ar abundance does not evolve significantly with redshift. Recent nucleosynthesis models find that significant amounts of S and Ar are produced in Type Ia supernovae, such that the S/O and Ar/O abundances in Q2343-D40 could be the result of predominantly core-collapse supernova enrichment. Future JWST observations of high-z galaxies will uncover whether S/O and Ar/O are sensitive to the timescales of these different enrichment mechanisms.

Funder

Space Telescope Science Institute

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3