Temporal Scattering, Depolarization, and Persistent Radio Emission from Magnetized Inhomogeneous Environments near Repeating Fast Radio Burst Sources

Author:

Yang Yuan-PeiORCID,Lu WenbinORCID,Feng YiORCID,Zhang BingORCID,Li DiORCID

Abstract

Abstract Some repeating fast radio burst (FRB) sources exhibit complex polarization behaviors, including frequency-dependent depolarization, variation of rotation measure (RM), and oscillating spectral structures of polarized components. Very recently, Feng et al. reported that active repeaters exhibit conspicuous frequency-dependent depolarization and a strong correlation between RM scatter (σ RM) and the temporal scattering time (τ s), σ RM τ s 1.0 ± 0.2 , both of which can be well described by multipath propagation through a magnetized inhomogeneous plasma screen. This observation strongly suggests that the temporal scattering and RM scatter originate from the same region. Besides, a particular finding of note in Feng et al. is that the FRBs with compact persistent radio sources (PRSs) tend to have extreme σ RM. In this work, we focus on some theoretical predictions of the relations among temporal scattering, depolarization by RM scatter, and PRSs contributed by the magnetized plasma environment close to a repeating FRB source. The behaviors of the RM scatter imply that the magnetized plasma environment is consistent with a supernova remnant or pulsar wind nebula, and the predicted σ RMτ s relation is σ RM τ s ( 0.54 0.83 ) for different astrophysical scenarios. We further make a general discussion of PRSs that does not depend on specific astrophysical scenarios. We show that the specific luminosity of a PRS should have a positive correlation with the RM contributed by the plasma screen. This is consistent with the observations of FRB 121102 and FRB 190520B.

Funder

National Natural Science Foundation of China

Key Research Project of Zhejiang Lab

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3