Abstract
Abstract
The gravitational-wave (GW) detection of GW190521 has provided new insights on the mass distribution of black holes and new constraints for astrophysical formation channels. With independent claims of GW190521 having significant premerger eccentricity, we investigate what this implies for GW190521-like binaries that form dynamically. The Laser Interferometer Space Antenna (LISA) will also be sensitive to GW190521-like binaries if they are circular from an isolated formation channel. However, GW190521-like binaries that form dynamically may skip the LISA band entirely. To this end, we simulate GW190521 analogs that dynamically form via post-Newtonian binary–single scattering. From these scattering experiments, we find that GW190521-like binaries may enter the LIGO-Virgo band with significant eccentricity as suggested by recent studies, though well below an eccentricity of e
10 Hz ≲ 0.7. Eccentric GW190521-like binaries further motivate the astrophysical science case for a decihertz GW observatory, such as the kilometer-scale version of the Midband Atomic Gravitational-wave Interferometric Sensor. We carry out a Fisher analysis to estimate how well the eccentricity of GW190521-like binaries can be constrained with such a decihertz detector. These eccentricity constraints would also provide additional insights into the possible environments that GW190521-like binaries form in.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献