Abstract
Abstract
We present early-phase panchromatic photometric and spectroscopic coverage spanning the far-ultraviolet to near-infrared regime of the nearest hydrogen-rich core-collapse supernova (SN) in the last 25 yr, SN 2023ixf. We observe early “flash” features in the optical spectra due to confined dense circumstellar material (CSM). We observe high-ionization absorption lines (Fe ii, Mg ii) in the ultraviolet spectra from very early on. We also observe a multipeaked emission profile of Hα in the spectrum beginning at ∼16 days, which indicates ongoing interaction of the SN ejecta with a preexisting shell-shaped CSM having an inner radius of ∼75 au and an outer radius of ∼140 au. The shell-shaped CSM is likely a result of enhanced mass loss ∼35–65 yr before the explosion assuming a standard red supergiant wind. The UV spectra are dominated by multiple highly ionized narrow absorption and broad emission features from elements such as C, N, O, Si, Fe, and Ni. Based on early light-curve models of Type II SNe, we infer that the nearby dense CSM confined to 7 ± 3 × 1014 cm (∼45 au) is a result of enhanced mass loss (10−3.0±0.5
M
⊙ yr−1) two decades before the explosion.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献