Abstract
Abstract
We analyze pre-explosion near- and mid-infrared (IR) imaging of the site of SN 2023ixf in the nearby spiral galaxy M101 and characterize the candidate progenitor star. The star displays compelling evidence of variability with a possible period of ≈1000 days and an amplitude of Δm ≈ 0.6 mag in extensive monitoring with the Spitzer Space Telescope since 2004, likely indicative of radial pulsations. Variability consistent with this period is also seen in the near-IR J and K
s
bands between 2010 and 2023, up to just 10 days before the explosion. Beyond the periodic variability, we do not find evidence for any IR-bright pre-supernova outbursts in this time period. The IR brightness (
M
K
s
=
−
10.7
mag) and color (J − K
s
= 1.6 mag) of the star suggest a luminous and dusty red supergiant. Modeling of the phase-averaged spectral energy distribution (SED) yields constraints on the stellar temperature (
T
eff
=
3500
−
1400
+
800
K) and luminosity (
log
L
/
L
⊙
=
5.1
±
0.2
). This places the candidate among the most luminous Type II supernova progenitors with direct imaging constraints, with the caveat that many of these rely only on optical measurements. Comparison with stellar evolution models gives an initial mass of M
init = 17 ± 4 M
⊙. We estimate the pre-supernova mass-loss rate of the star between 3 and 19 yr before explosion from the SED modeling at
M
̇
≈
3
×
10
−
5
to 3 × 10−4
M
⊙ yr−1 for an assumed wind velocity of v
w
= 10 km s−1, perhaps pointing to enhanced mass loss in a pulsation-driven wind.
Funder
National Science Foundation
Heising-Simons Foundation
John Templeton Foundation
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献