Expanding the Time Domain of Multiple Populations: Evidence of Nitrogen Variations in the ∼1.5 Gyr Old Star Cluster NGC 1783

Author:

Cadelano MarioORCID,Dalessandro EmanueleORCID,Salaris MaurizioORCID,Bastian NateORCID,Mucciarelli AlessioORCID,Saracino SaraORCID,Martocchia SilviaORCID,Cabrera-Ziri IvanORCID

Abstract

Abstract We present the result of a detailed analysis of Hubble Space Telescope UV and optical deep images of the massive and young (∼1.5 Gyr) stellar cluster NGC 1783 in the Large Magellanic Cloud. This system does not show evidence of multiple populations (MPs) along the red giant branch (RGB) stars. However, we find that the cluster main sequence (MS) shows evidence of a significant broadening (50% larger than what is expected from photometric errors) along with hints of possible bimodality in the MP sensitive (m F343Nm F438W, m F438W) color–magnitude diagram (CMD). Such an effect is observed in all color combinations including the m F343N filter, while it is not found in the optical CMDs. This observational evidence suggests we might have found light-element chemical abundance variations along the MS of NGC 1783, which represents the first detection of MPs in a system younger than 2 Gyr. A comparison with isochrones including MP-like abundances shows that the observed broadening is compatible with a N abundance enhancement of Δ([N/Fe]) ∼ 0.3. Our analysis also confirms previous results about the lack of MPs along the cluster RGB. However, we find that the apparent disagreement between the results found on the MS and the RGB is compatible with the mixing effects linked to the first dredge up. This study provides new key information about the MP phenomenon and suggests that star clusters form in a similar way at any cosmic age.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3