Empirically Constraining the Spectra of Stellar Surface Features Using Time-resolved Spectroscopy

Author:

Berardo DavidORCID,de Wit JulienORCID,Rackham Benjamin V.ORCID

Abstract

Abstract Transmission spectroscopy is currently the technique best suited to study a wide range of planetary atmospheres, leveraging the filtering of a star’s light by a planet’s atmosphere rather than its own emission. However, as both a planet and its star contribute to the information encoded in a transmission spectrum, an accurate accounting of the stellar contribution is pivotal to enabling robust atmospheric studies. As current stellar models lack the required fidelity for such accounting, we investigate here the capability of time-resolved spectroscopy to yield high-fidelity, empirical constraints on the emission spectra of stellar surface heterogeneities (i.e., spots and faculae). Using TRAPPIST-1 as a test case, we simulate time-resolved JWST/NIRISS spectra and demonstrate that with a blind approach incorporating no physical priors, it is possible to constrain the photospheric spectrum to ≤0.5% and the spectra of stellar heterogeneities to within ≲10%, a precision that enables photon-limited (rather than model-limited) science. Now confident that time-resolved spectroscopy can propel the field in an era of robust high-precision transmission spectroscopy, we introduce a list of areas for future exploration to harness its full potential, including wavelength dependency of limb darkening and hybrid priors from stellar models as a means to further break the degeneracy between the position, size, and spectra of heterogeneities.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3