Black Hole–Halo Mass Relation from UNIONS Weak Lensing

Author:

Li QinxunORCID,Kilbinger MartinORCID,Luo WentaoORCID,Wang KaiORCID,Wang HuiyuanORCID,Wittje AnnaORCID,Hildebrandt HendrikORCID,Van Waerbeke LudovicORCID,Hudson Michael J.ORCID,Farrens SamuelORCID,Liaudat Tobías I.ORCID,Liu HuilingORCID,Zhang ZiwenORCID,Wang Qingqing,Russier Elisa,Guinot Axel,Baumont LucieORCID,Hervas Peters Fabian,de Boer ThomasORCID,Wang JiaqiORCID,McConnachie Alan,Cuillandre Jean-Charles,Fabbro Sébastien

Abstract

Abstract This Letter presents, for the first time, direct constraints on the black hole–halo mass relation using weak gravitational-lensing measurements. We construct type I and type II active galactic nucleus (AGN) samples from the Sloan Digital Sky Survey, with a mean redshift of 0.4 (0.1) for type I (type II) AGNs. This sample is cross correlated with weak-lensing shear from the Ultraviolet Near Infrared Optical Northern Survey. We compute the excess surface mass density of the halos associated with 36,181 AGNs from 94,308,561 lensed galaxies and fit the halo mass in bins of black hole mass. We find that more massive AGNs reside in more massive halos. The relation between halo mass and black hole mass is well described by a power law of slope 0.6 for both type I and type II samples, in agreement with models that link black hole growth to baryon feedback. We see no dependence on AGN type or redshift in the black hole–halo mass relation below a black hole mass of 108.5 M . Above that mass, we find more massive halos for the low-z type II sample compared to the high-z type I sample, but this difference may be interpreted as systematic error in the black hole mass measurements. Our results are consistent with previous measurements for non-AGN galaxies. At a fixed black hole mass, our weak-lensing halo masses are consistent with galaxy rotation curves but significantly lower than galaxy-clustering measurements. Finally, our results are broadly consistent with state-of-the-art hydrodynamical cosmological simulations, providing a new constraint for black hole masses in simulations.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3