Titania's Heat Fluxes Revealed by Messina Chasmata

Author:

Beddingfield Chloe B.ORCID,Leonard Erin J.ORCID,Nordheim Tom A.ORCID,Cartwright Richard J.ORCID,Castillo-Rogez Julie C.ORCID

Abstract

Abstract Messina Chasmata is a relatively young tectonic structure on Titania based on cross-cutting relationships, although an absolute age has not been estimated. We investigated lithospheric flexure bounding Messina and found that the terrain along both rims reflects Titania’s thermal properties. We estimate Titania’s heat fluxes to have been 5–12 mW m−2 in this region, assuming that the lithosphere is composed of pure H2O ice without porosity. These estimates are lower if lithospheric porosity and/or NH3–H2O are also present. If Messina is ancient, forming as a result of freeze expansion, then the reflected heat fluxes are consistent with radiogenic heating. However, if Messina is instead young, then an additional heat source is required. In this scenario, perhaps tidal heating associated with the past three-body resonance shared between Titania, Ariel, and Umbriel generated this heat. However, this scenario is unlikely because the amount of tidal heating produced on Titania would have been minimal. Titania’s heat fluxes are notably lower than estimates for Miranda or Ariel, and future work is needed to investigate Umbriel and Oberon to gain a fuller understanding of Uranian moon thermal and orbital histories. Additionally, further constraints on Titania’s more ancient heat fluxes could be obtained by investigating relatively older features, such as some viscously relaxed impact craters.

Funder

NASA ∣ Jet Propulsion Laboratory

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3