Constraining the Effect of Convective Inhibition on the Thermal Evolution of Uranus and Neptune

Author:

Markham Steve,Stevenson DaveORCID

Abstract

Abstract The internal heat flows of both Uranus and Neptune remain major outstanding problems in planetary science. Uranus’s surprisingly cold effective temperature is inconsistent with adiabatic thermal evolution models, while Neptune’s substantial internal heat flow is twice its received insolation. In this work, we constrain the magnitude of influence condensation, including latent heat and inhibition of convection, can have on the thermal evolution of these bodies. We find that while the effect can be significant, it is insufficient to solve the Uranus faintness problem on its own. Self-consistently considering the effects of both latent heat release and stable stratification, methane condensation can speed up the cooldown time of Uranus and Neptune by no more than 15%, assuming 5% molar methane abundance. Water condensation works in the opposite direction; water condensation can slow down the cooldown timescale of Uranus and Neptune by no more than 15%, assuming 12% molar water abundance. We also constrain the meteorological implications of convective inhibition. We demonstrate that sufficiently abundant condensates will relax to a state of radiative–convective equilibrium requiring finite activation energy to disrupt. We also comment on the importance of considering convective inhibition when modeling planetary interiors.

Funder

NASA FINESST

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3