Collisional Evolution of the Inner Zodiacal Cloud

Author:

Szalay J. R.ORCID,Pokorný P.ORCID,Malaspina D. M.ORCID,Pusack A.ORCID,Bale S. D.ORCID,Battams K.ORCID,Gasque L. C.ORCID,Goetz K.ORCID,Krüger H.ORCID,McComas D. J.ORCID,Schwadron N. A.ORCID,Strub P.

Abstract

Abstract The zodiacal cloud is one of the largest structures in the solar system and strongly governed by meteoroid collisions near the Sun. Collisional erosion occurs throughout the zodiacal cloud, yet it is historically difficult to directly measure and has never been observed for discrete meteoroid streams. After six orbits with Parker Solar Probe (PSP), its dust impact rates are consistent with at least three distinct populations: bound zodiacal dust grains on elliptic orbits (α-meteoroids), unbound β-meteoroids on hyperbolic orbits, and a third population of impactors that may be either direct observations of discrete meteoroid streams or their collisional by-products (“β-streams”). The β-stream from the Geminids meteoroid stream is a favorable candidate for the third impactor population. β-streams of varying intensities are expected to be produced by all meteoroid streams, particularly in the inner solar system, and are a universal phenomenon in all exozodiacal disks. We find the majority of collisional erosion of the zodiacal cloud occurs in the range of 10–20 solar radii and expect this region to also produce the majority of pickup ions due to dust in the inner solar system. A zodiacal erosion rate of at least ∼100 kg s−1 and flux of β-meteoroids at 1 au of (0.4–0.8) × 10−4 m−2 s−1 are found to be consistent with the observed impact rates. The β-meteoroids investigated here are not found to be primarily responsible for the inner source of pickup ions, suggesting nanograins susceptible to electromagnetic forces with radii below ∼50 nm are the inner source of pickup ions. We expect the peak deposited energy flux to PSP due to dust to increase in subsequent orbits, up to 7 times that experienced during its sixth orbit.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dust Surrounding Mars Detected by MAVEN;2024-08-27

2. Novel Insights on the Dust Distribution in the Zodiacal Dust Cloud from PSP/WISPR Observations at Large Elongations;The Astrophysical Journal;2024-08-23

3. Tiefer Einblick ins innere Sonnensystem;Physik in unserer Zeit;2024-05-28

4. Ulysses spacecraft in situ detections of cometary dust trails;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-05-13

5. How Long-lived Grains Dominate the Shape of the Zodiacal Cloud;The Planetary Science Journal;2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3