Lunar Surface and Buried Rock Abundance Retrieved from Chang’E-2 Microwave and Diviner Data

Author:

Wei GuangfeiORCID,Byrne ShaneORCID,Li Xiongyao,Hu Guoping

Abstract

Abstract Microwave emission of the Moon, measured by the Chang’E-2 Microwave Radiometer (MRM), provides an effective way to understand the physical properties of lunar near-surface materials. The observed microwave brightness temperature is affected by near-surface temperatures, which are controlled by the surface albedo, roughness, regolith thermophysical properties, and the high thermal inertia and permittivity of both surface and buried rocks. In this study, we propose a rock model using thermal infrared measurements from the Lunar Reconnaissance Orbiter's (LRO) Diviner as surface temperature constraints. We then retrieve the volumetric rock abundance (RA) from nighttime MRM data at several rocky areas. Although our retrieved MRM RA cannot be compared to the rock concentration measured with LRO Camera images directly, there is a good agreement with Diviner-derived RA and radar observations. The extent of several geological units, including rocky craters, hummocky regions, and impact melts, agree well with the distribution of elevated rock concentration. Based on seven large craters with published model ages, we present an inverse correlation between rock concentration and crater age. The result shows that the rock concentration decreases with crater age rapidly within 1 Ga but declines slowly after that. These data are consistent with a short survival time for exposed rocks and a long lifetime for buried rocks that are shielded from lunar surface processes.

Funder

The B-type Strategic Priority Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3