Identifying Impact Melt from the Smythii Basin: Toward an Improved Chronology for Lunar Basin Formation

Author:

Runyon Kirby D.ORCID,Nelson LyleORCID,Moriarty III Daniel P.ORCID

Abstract

Abstract At c. 820 km in diameter, the Smythii impact basin is one of the large lunar basins (>200 km diameter) thought to have formed during the pre-Nectarian period. We combine Lunar Reconnaissance Orbiter imagery, topography, and Moon Mineralogy Mapper compositional data to interpret the surface and subsurface geology of the Smythii basin with the goal of identifying datable impact melt for investigation by a future lunar lander. Surface outcrops exposed on the central peak of the Schubert C crater are identified as uplifted deposits of Smythii impact melt, and a mission concept is presented for sampling these exposures in order to establish the absolute age of the Smythii basin using radioisotopic geochronology. This mission concept is in line with one of the current top-tier priorities for lunar science: determining the age of large basins and thus constraining the impact flux during the Moon's first billion years, which is a proxy record for the role of impacts on the surface environment and habitability of early Earth and the inner solar system during this interval.

Funder

National Science Foundation

USRA NASA Postdoctoral Program Fellowship

Johns Hopkins APL Sabbatical Parsons Teaching Fellowship

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3