Spectral Modeling Using Radiative Transfer Theory with Packing Density Correction: Demonstration for Saturnian Icy Satellites

Author:

Kolokolova LudmillaORCID,Ito GenORCID,Pitman Karly M.ORCID,McMichael Kirsten,Reui Nicholas

Abstract

Abstract We demonstrate the capabilities of the radiative transfer theory with packed media correction (RTT-PM) in analyzing spectral data of planetary surfaces by modeling to first order the shape and band depths of spectra of icy satellites of Saturn acquired by Cassini Visual and Infrared Mapping Spectrometer (VIMS). The RTT-PM is an efficient and physically strict numerical method that employs a packing density correction, the static structure factor, to single-scattering properties of particles to simulate the light scattering by densely packed media. Originally created for layers formed by spherical homogeneous particles, the RTT-PM method has been recently updated to treat particles of arbitrary shapes and structures, including aggregates. We apply the RTT-PM method to roughly model Cassini VIMS spectra from Dione, Rhea, and Tethys as layers of spherical particles versus aggregates. The shape and structure of particles strongly affect the modeled spectra; the best model comparisons to the VIMS spectra were obtained when the surface icy particles were assumed to be small aggregates consisting of micron-sized monomers, which may imply rather compact, irregular particles. Our results suggest that presenting the icy regolith as a dense layer of nonspherical particles may noticeably affect the modeling results and bring a better understanding of the satellite surface structure and composition. The RTT-PM demonstrated itself to be a powerful tool for such studies: we computed a reflectance for 22 wavelengths within minutes using a regular desktop computer. The combination of such high efficiency and physical strictness makes the RTT-PM method advantageous for analyzing large spaceborne instrument data sets.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3