Dione’s Thermal Inertia and Bolometric Bond Albedo Derived from Cassini/CIRS Observations of Solar Eclipse Ingress

Author:

Howett Carly J. A.ORCID,Spencer John R.ORCID

Abstract

Abstract On 2010 May 18 Cassini’s Composite Infrared Spectrometer (CIRS) observed Dione’s leading hemisphere as its surface went into solar eclipse. Surface temperatures derived from each of CIRS’ focal plane 3 (FP3, 600−1100 cm−1) show a rapid decrease in Dione’s surface temperature upon eclipse ingress. This change was compared to the model surface emission to constrain bolometric Bond albedo and thermal inertia. Seven FP3 detectors were able to constrain the observed surface’s thermophysical properties. The bolometric Bond albedo derived from these detectors are consistent with one another (0.54 ± 0.05 to 0.62 ± 0.03) and that of diurnal studies (e.g., 0.49 ± 0.11, Howett et al. 2014). This indicates that Dione’s albedo is uniform to within the uncertainties across the observed region of its leading hemisphere. The derived thermal inertias are consistent across detectors, 9 ± 4 J m−2 K−1 s−1/2 (MKS) to 16 ± 8 MKS, and with previous diurnal studies (e.g., 8 to 12 MKS, Howett et al. 2014). The skin depth probed by the eclipse thermal wave is ∼0.6–1 mm, which is much shallower than that probed by diurnal cycles (∼50 mm). Thus, the agreement in thermal inertia between the eclipse and diurnal studies indicates that Dione’s subsurface structure is uniform from submillimeter to subcentimeter depths. This is different from the Jovian system, where eclipse-derived thermal inertias are much lower than those derived from diurnal studies. The cause of this difference is not known, but one possibility is that the E-ring grains that bombard Dione’s leading hemisphere overturn it, causing uniformity to centimeter depths.

Funder

Cassini Project

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3