The Effects of Early Collisional Evolution on Amorphous Water Ice Bodies

Author:

Steckloff Jordan K.ORCID,Sarid GalORCID,Johnson Brandon C.ORCID

Abstract

Abstract Conditions in the outer protoplanetary disk during solar system formation were thought to be favorable for the formation of amorphous water ice (AWI), a glassy phase of water ice. However, subsequent collisional processing could have shock-crystallized any AWI present. Here we use the iSALE shock physics hydrocode to simulate impacts between large icy bodies at impact velocities relevant to these collisional environments, and then we feed these results into a custom-built AWI crystallization script, to compute how much AWI crystallizes/survives these impact events. We find that impact speeds between icy bodies after planet migration (i.e., between trans-Neptunian objects) are too slow to crystallize any meaningful fraction of AWI. During planet migration, however, the amount of AWI that crystallizes is highly stochastic: relatively little AWI crystallizes at lower impact velocities (less than ∼2 km s−1), yet most AWI present in the bodies (if equally sized) or impactor and impact site (if different sizes) crystallizes at higher impact velocities (greater than ∼4 km s−1). Given that suspected impact speeds during planet migration were ∼2–4 km s−1, this suggests that primordial AWI’s ability to survive planet migration is highly stochastic. However, if proto-Edgeworth–Kuiper Belt (proto-EKB) objects and their fragments experienced multiple impact events, nearly all primordial AWI could have crystallized; such a highly collisional proto-EKB during planet migration is consistent with the lack of any unambiguous direct detection of AWI on any icy body. Ultimately, primordial AWI’s survival to the present day depends sensitively on the proto-EKB’s size–frequency distribution, which is currently poorly understood.

Funder

NASA ∣ SMD ∣ Planetary Science Division

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3