ALMA Observations of the DART Impact: Characterizing the Ejecta at Submillimeter Wavelengths

Author:

Roth Nathan X.ORCID,Milam Stefanie N.ORCID,Remijan Anthony J.ORCID,Cordiner Martin A.ORCID,Busch Michael W.ORCID,Thomas Cristina A.ORCID,Rivkin Andrew S.ORCID,Moullet ArielleORCID,Roush Ted L.ORCID,Siebert Mark A.ORCID,Li 李荐扬 Jian-YangORCID,Fahnestock Eugene G.ORCID,Trigo-Rodríguez Josep M.ORCID,Opitom Cyrielle,Hirabayashi MasatoshiORCID

Abstract

Abstract We report observations of the Didymos–Dimorphos binary asteroid system using the Atacama Large Millimeter/submillimeter Array (ALMA) and the Atacama Compact Array (ACA) in support of the Double Asteroid Redirection Test mission. Our observations on UT 2022 September 15 provided a preimpact baseline and the first measure of Didymos–Dimorphos’s spectral emissivity at λ = 0.87 mm, which was consistent with the handful of siliceous and carbonaceous asteroids measured at millimeter wavelengths. Our postimpact observations were conducted using four consecutive executions each of ALMA and the ACA spanning from T+3.52 to T+8.60 hr, sampling thermal emission from the asteroids and the impact ejecta. We scaled our preimpact baseline measurement and subtracted it from the postimpact observations to isolate the flux density of millimeter-sized grains in the ejecta. Ejecta dust masses were calculated for a range of materials that may be representative of Dimorphos’s S-type asteroid material. The average ejecta mass over our observations is consistent with 1.3–6.4 × 107 kg, with the lower and higher values calculated for amorphous and crystalline silicates, respectively. Owing to the likely crystalline nature of S-type asteroid material, the higher value is favored. These ejecta masses represent 0.3%–1.5% of Dimorphos’s total mass and are in agreement with lower limits on the ejecta mass based on measurements at optical wavelengths. Our results provide the most sensitive measure of millimeter-sized material in the ejecta and demonstrate the power of ALMA for providing supporting observations to spaceflight missions.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3